Energy based changes

This commit is contained in:
max
2025-12-18 02:30:17 +01:00
parent c22452c66c
commit fa68f73055
5 changed files with 220 additions and 295 deletions

View File

@@ -5,10 +5,11 @@ namespace Car_simulation
public class Car public class Car
{ {
public Vector2 Position = new Vector2(0, 0); public Vector2 Position = new Vector2(0, 0);
public Vector2 Velocity = new Vector2(0, 0); public Vector2 Velocity => new Vector2(WheelSystem.CarSpeed, 0); // Now directly from wheels
public float Speed => Velocity.Length;
public float Mass = 1500f; // kg public float Speed => WheelSystem.CarSpeed;
public float Mass { get; set; } = 1500f; // kg
public int WheelCount = 4; public int WheelCount = 4;
public int DrivenWheels = 2; public int DrivenWheels = 2;
@@ -20,7 +21,7 @@ namespace Car_simulation
// Aerodynamics // Aerodynamics
private const float AirDensity = 1.225f; private const float AirDensity = 1.225f;
public float DragCoefficient = 0.1f; public float DragCoefficient = 0.3f;
public float FrontalArea = 2.2f; // m² public float FrontalArea = 2.2f; // m²
public float RollingResistanceCoefficient = 0.015f; public float RollingResistanceCoefficient = 0.015f;
@@ -36,12 +37,14 @@ namespace Car_simulation
{ {
Engine = new Engine(); Engine = new Engine();
WheelSystem = new WheelSystem(); WheelSystem = new WheelSystem();
Drivetrain = new Drivetrain(Engine, WheelSystem);
// Initial setup // Set car mass in wheel system (so it's included in energy calculations)
WheelSystem.CarMass = Mass;
WheelSystem.WheelCount = WheelCount; WheelSystem.WheelCount = WheelCount;
WheelSystem.DrivenWheels = DrivenWheels; WheelSystem.DrivenWheels = DrivenWheels;
Drivetrain = new Drivetrain(Engine, WheelSystem);
InitializeAudio(); InitializeAudio();
} }
@@ -52,7 +55,6 @@ namespace Car_simulation
_engineSound = new EngineSound(); _engineSound = new EngineSound();
_engineSound.SetEngineState(Engine.IdleRPM, 0f); _engineSound.SetEngineState(Engine.IdleRPM, 0f);
_engineSound.StartSound(); _engineSound.StartSound();
} }
catch (Exception ex) catch (Exception ex)
{ {
@@ -64,27 +66,30 @@ namespace Car_simulation
public void Update(float deltaTime) public void Update(float deltaTime)
{ {
Engine.Throttle = ThrottleInput; Engine.Throttle = ThrottleInput;
Drivetrain.ClutchEngagement = 1f - ClutchInput; // Convert: 0 input = 1 engagement Drivetrain.ClutchEngagement = 1f - ClutchInput;
if (ForceClutch) if (ForceClutch)
Drivetrain.ClutchEngagement = 0f; Drivetrain.ClutchEngagement = 0f;
float resistanceTorque = CalculateResistanceTorque(); // Update engine
WheelSystem.ResistanceTorque = resistanceTorque; Engine.Update(deltaTime);
// Update drivetrain (transfers energy between engine and wheels+car)
Drivetrain.Update(deltaTime); Drivetrain.Update(deltaTime);
// Calculate and apply resistance
float resistanceForce = CalculateTotalResistanceForce();
WheelSystem.ResistanceTorque = resistanceForce * WheelSystem.Radius;
WheelSystem.ApplyResistance(deltaTime); WheelSystem.ApplyResistance(deltaTime);
float engineLoad = Drivetrain.CalculateEngineLoad(deltaTime); // Apply braking
Engine.Update(deltaTime, engineLoad);
UpdateVehicleMotion(deltaTime);
ApplyBraking(deltaTime); ApplyBraking(deltaTime);
// Update position based on velocity (which comes from WheelSystem)
Position += Velocity * deltaTime;
if (_audioEnabled) if (_audioEnabled)
{
UpdateAudio(); UpdateAudio();
}
} }
private void UpdateAudio() private void UpdateAudio()
@@ -100,72 +105,11 @@ namespace Car_simulation
} }
} }
private void UpdateVehicleMotion(float deltaTime)
{
// Calculate net force
float tractiveForce = CalculateTractiveForce();
float resistanceForce = CalculateTotalResistanceForce();
float netForce = tractiveForce - resistanceForce;
// Calculate acceleration: a = F / m
float acceleration = netForce / Mass;
// Update velocity: v = v₀ + a·Δt
if (Velocity.Length > 0)
{
Vector2 direction = Velocity.Normalized();
float newSpeed = Velocity.Length + acceleration * deltaTime;
newSpeed = Math.Max(newSpeed, 0); // Don't go backwards without reverse gear
Velocity = direction * newSpeed;
}
else
{
// Starting from standstill
Velocity = new Vector2(acceleration * deltaTime, 0);
}
Position += Velocity * deltaTime;
// Sync wheel speed with actual vehicle speed (with slip allowance)
float currentWheelSpeed = Velocity.Length;
WheelSystem.SetSpeed(currentWheelSpeed);
}
private float CalculateTractiveForce()
{
// 1. Get the torque available at the wheels
float wheelTorque = Drivetrain.ClutchTorque * Drivetrain.Efficiency;
// 2. Convert torque to theoretical force: F = τ / r
float theoreticalForce = wheelTorque / WheelSystem.Radius;
// 3. Account for weight distribution and driven wheels
// Normal load on driven wheels = (DrivenWheels / WheelCount) * Weight
float drivenWheelNormalLoad = (DrivenWheels / (float)WheelCount) * Mass * 9.81f;
// 4. Calculate maximum tractive force based on friction (tire grip)
float frictionCoefficient = 1.2f; // Typical tire on dry asphalt
float maxTractiveForce = drivenWheelNormalLoad * frictionCoefficient;
// 5. Limit the force by what the tires can actually grip
// Also handle direction (forward/reverse)
if (theoreticalForce > 0)
{
return Math.Min(theoreticalForce, maxTractiveForce);
}
else
{
// For reverse or engine braking
return Math.Max(theoreticalForce, -maxTractiveForce);
}
}
private void ApplyBraking(float deltaTime) private void ApplyBraking(float deltaTime)
{ {
if (BrakeInput <= 0) return; if (BrakeInput <= 0) return;
float brakeTorque = BrakeInput * 500f; // 500 Nm max brake torque float brakeTorque = BrakeInput * 3000f;
WheelSystem.ApplyTorque(-brakeTorque, deltaTime); WheelSystem.ApplyTorque(-brakeTorque, deltaTime);
} }
@@ -178,40 +122,34 @@ namespace Car_simulation
private float CalculateDragForce() private float CalculateDragForce()
{ {
// F_drag = 0.5 * ρ * Cd * A * v²
float speed = Speed; float speed = Speed;
return 0.5f * AirDensity * DragCoefficient * FrontalArea * speed * speed; return 0.5f * AirDensity * DragCoefficient * FrontalArea * speed * speed;
} }
private float CalculateRollingResistanceForce() private float CalculateRollingResistanceForce()
{ {
// F_rolling = C_r * m * g
return RollingResistanceCoefficient * Mass * 9.81f; return RollingResistanceCoefficient * Mass * 9.81f;
} }
// Convert resistance force to wheel torque
public float CalculateResistanceTorque()
{
float totalForce = CalculateTotalResistanceForce();
return totalForce * WheelSystem.Radius;
}
public void DisplayUpdate() public void DisplayUpdate()
{ {
Console.SetCursorPosition(0, 0); Console.SetCursorPosition(0, 0);
Console.WriteLine($"Engine Energy: {Engine.FlywheelEnergy,7:F0} J"); Console.WriteLine($"Engine Energy: {Engine.FlywheelEnergy,7:F0} J");
Console.WriteLine($"Engine Torque: {Engine.GetTorqueOutput(),7:F0} Nm"); Console.WriteLine($"Engine Torque: {Engine.GetTorqueOutput(),7:F0} Nm");
Console.WriteLine($"Engine RPM: {Engine.RPM,7:F0}"); Console.WriteLine($"Engine RPM: {Engine.RPM,7:F0}");
Console.WriteLine($"Wheel Energy: {WheelSystem.WheelEnergy,7:F0} J"); Console.WriteLine($"Total Energy: {WheelSystem.TotalEnergy,7:F0} J");
Console.WriteLine($" (Wheel Rot: {WheelSystem.GetRotationalEnergy(),7:F0} J)");
Console.WriteLine($" (Car Trans: {WheelSystem.GetTranslationalEnergy(),7:F0} J)");
Console.WriteLine($"Wheel RPM: {WheelSystem.RPM,7:F0}"); Console.WriteLine($"Wheel RPM: {WheelSystem.RPM,7:F0}");
Console.WriteLine($"Vehicle: {Speed * 3.6f,7:F1} km/h"); Console.WriteLine($"Vehicle: {Speed * 3.6f,7:F1} km/h");
Console.WriteLine($"Throttle: {Engine.GetActualThrottle() * 100,6:F1}%"); Console.WriteLine($"Throttle: {Engine.GetActualThrottle() * 100,6:F1}%");
Console.WriteLine($"Power: {Engine.CurrentPower / 1000,6:F1} kW"); Console.WriteLine($"Power: {Engine.CurrentPower / 1000,6:F1} kW");
Console.WriteLine($"Transmitted: {Drivetrain.TransmittedPower / 1000,6:F1} kW"); Console.WriteLine($"Transmitted: {Drivetrain.TransmittedPower / 1000,6:F1} kW");
Console.WriteLine($"Brake: {BrakeInput * 100,6:F1}%"); Console.WriteLine($"Brake: {BrakeInput * 100,6:F1}%");
Console.WriteLine($"Clutch: {ClutchInput * 100,6:F1}% disengaged");
Console.WriteLine($"Speed Diff: {Drivetrain.GetSpeedDifferenceRPM(),6:F0} RPM"); Console.WriteLine($"Speed Diff: {Drivetrain.GetSpeedDifferenceRPM(),6:F0} RPM");
Console.WriteLine($"Clutch: {ClutchInput * 100,6:F1}% disengaged");
Console.WriteLine($"Clutch T: {Drivetrain.ClutchTorque,6:F0} Nm"); Console.WriteLine($"Clutch T: {Drivetrain.ClutchTorque,6:F0} Nm");
Console.WriteLine($"Clutch Slip: {Drivetrain.GetClutchSlipPercent(),6:F1}%");
Console.WriteLine($"Resistance: {CalculateTotalResistanceForce(),6:F1} N"); Console.WriteLine($"Resistance: {CalculateTotalResistanceForce(),6:F1} N");
Console.WriteLine($"Drag: {CalculateDragForce(),6:F1} N"); Console.WriteLine($"Drag: {CalculateDragForce(),6:F1} N");
Console.WriteLine($"Rolling: {CalculateRollingResistanceForce(),6:F1} N"); Console.WriteLine($"Rolling: {CalculateRollingResistanceForce(),6:F1} N");

View File

@@ -9,188 +9,139 @@
private int currentGear = 1; private int currentGear = 1;
public float[] GearRatios { get; set; } = public float[] GearRatios { get; set; } =
{ {
3.8f, // 1st - Lower for better launch 3.8f, // 1st
2.5f, // 2nd 2.5f, // 2nd
1.8f, // 3rd 1.8f, // 3rd
1.3f, // 4th 1.3f, // 4th
1.0f, // 5th - Direct drive 1.0f, // 5th
0.8f, // 6th - Overdrive 0.8f, // 6th
0.65f // 7th - Double overdrive (optional) 0.65f // 7th
}; };
public float FinalDriveRatio { get; set; } = 5.0f; public float FinalDriveRatio { get; set; } = 4.0f;
public float Efficiency { get; set; } = 0.95f; public float Efficiency { get; set; } = 0.95f;
public float ClutchEngagement { get; set; } = 0f; // 0 = disengaged, 1 = fully engaged public float ClutchEngagement { get; set; } = 0f; // 0 = disengaged, 1 = fully engaged
// Calculated
public float GearRatio => GetCurrentGearRatio();
public float TotalRatio => GearRatio * FinalDriveRatio;
// Clutch properties // Clutch properties
public float ClutchStiffness { get; set; } = 500f; // Nm/(rad/s) - how strongly clutch pulls speeds together public float MaxClutchTorque { get; set; } = 450f;
public float MaxClutchTorque { get; set; } = 4500f; // Maximum torque clutch can transmit public float ClutchStiffness { get; set; } = 20f; // Softer spring
// State // State
public float SpeedDifference { get; private set; } // rad/s
public float ClutchTorque { get; private set; } public float ClutchTorque { get; private set; }
public float TransmittedPower { get; private set; } public float TransmittedPower { get; private set; }
public float ClutchSlipRatio { get; private set; }
private float previousWheelOmega = 0f;
public Drivetrain(Engine engine, WheelSystem wheelSystem) public Drivetrain(Engine engine, WheelSystem wheelSystem)
{ {
Engine = engine; Engine = engine;
WheelSystem = wheelSystem; WheelSystem = wheelSystem;
previousWheelOmega = wheelSystem.AngularVelocity;
} }
public void GearUp() public void Update(float deltaTime)
{
if (currentGear < GearRatios.Length)
currentGear++;
}
public void GearDown()
{
if (currentGear > 1)
currentGear--;
}
private float GetCurrentGearRatio()
{
if (currentGear == 0) return 0f; // Neutral
if (currentGear == -1) return -3.5f; // Reverse (example ratio)
if (currentGear > 0 && currentGear <= GearRatios.Length)
return GearRatios[currentGear - 1];
return 0f; // Invalid gear
}
public float CalculateSpeedDifference()
{
if (TotalRatio == 0) return 0f;
float engineOmega = Engine.AngularVelocity;
float wheelOmega = WheelSystem.AngularVelocity;
float expectedWheelOmega = engineOmega / TotalRatio;
SpeedDifference = wheelOmega - expectedWheelOmega;
return SpeedDifference;
}
public float CalculateClutchTorque()
{
if (ClutchEngagement <= 0.01f)
{
ClutchTorque = 0;
return 0f;
}
CalculateSpeedDifference();
float torque = -SpeedDifference * ClutchStiffness * ClutchEngagement;
torque = Math.Clamp(torque, -MaxClutchTorque, MaxClutchTorque);
float actualThrottle = Engine.GetActualThrottle();
float availableEngineTorque = Engine.GetTorqueOutput();
float maxTorqueAtClutch = maxEngineTorque * TotalRatio * Efficiency;
torque = maxTorqueAtClutch;
ClutchTorque = torque;
return torque;
}
public void ApplyDrivetrainWork(float deltaTime)
{ {
if (ClutchEngagement <= 0.01f || TotalRatio == 0) if (ClutchEngagement <= 0.01f || TotalRatio == 0)
{ {
ClutchTorque = 0; ClutchTorque = 0;
TransmittedPower = 0; TransmittedPower = 0;
ClutchSlipRatio = 1f;
return; return;
} }
CalculateSpeedDifference(); // Calculate expected vs actual wheel speeds
float clutchTorque = CalculateClutchTorque(); float expectedWheelOmega = Engine.AngularVelocity / TotalRatio;
float actualWheelOmega = WheelSystem.AngularVelocity;
float omegaDifference = actualWheelOmega - expectedWheelOmega;
bool engineDrivingWheels = clutchTorque > 0; // Calculate max torque clutch can transmit
bool wheelsDrivingEngine = clutchTorque < 0; float maxClutchTorque = MaxClutchTorque * ClutchEngagement;
if (engineDrivingWheels) // Simple spring model: torque tries to sync speeds
float desiredTorque = -omegaDifference * ClutchStiffness;
// Clamp to clutch capacity
desiredTorque = Math.Clamp(desiredTorque, -maxClutchTorque, maxClutchTorque);
// Also limit by engine capability when accelerating
if (desiredTorque > 0)
{ {
// Engine -> Wheels (normal driving) float engineTorque = Engine.GetTorqueOutput() * Engine.GetActualThrottle();
ApplyEngineToWheels(clutchTorque, deltaTime); float maxEngineTorqueAtWheels = engineTorque * TotalRatio * Efficiency;
} desiredTorque = Math.Min(desiredTorque, maxEngineTorqueAtWheels);
else if (wheelsDrivingEngine)
{
// Wheels -> Engine (engine braking)
ApplyWheelsToEngine(clutchTorque, deltaTime);
} }
TransmittedPower = clutchTorque * SpeedDifference; ClutchTorque = desiredTorque;
// Calculate energy transfer based on torque
float energyTransferred = 0f;
if (omegaDifference > 0.01f) // Wheels → Engine (engine braking)
{
// Power = torque × angular velocity (at slower side - engine)
float power = ClutchTorque * (Engine.AngularVelocity);
energyTransferred = power * deltaTime;
// Wheels lose energy, engine gains (minus efficiency losses)
float wheelEnergyLoss = Math.Abs(energyTransferred);
float engineEnergyGain = wheelEnergyLoss * Efficiency;
WheelSystem.TotalEnergy -= wheelEnergyLoss;
Engine.FlywheelEnergy += engineEnergyGain;
}
else if (omegaDifference < -0.01f) // Engine → Wheels (acceleration)
{
// Power = torque × angular velocity (at faster side - engine)
float power = -ClutchTorque * Engine.AngularVelocity; // Negative torque, positive power
energyTransferred = power * deltaTime;
// Engine loses energy, wheels gain
float engineEnergyLoss = Math.Abs(energyTransferred);
float wheelEnergyGain = engineEnergyLoss * Efficiency;
Engine.FlywheelEnergy -= engineEnergyLoss;
WheelSystem.TotalEnergy += wheelEnergyGain;
}
else
{
// Nearly synchronized
energyTransferred = 0;
}
// Calculate transmitted power
TransmittedPower = energyTransferred / deltaTime;
// Calculate clutch slip CORRECTLY:
// Slip = 0 when torque < max torque (clutch can handle it)
// Slip = 1 when torque = max torque (clutch is slipping)
if (maxClutchTorque > 0)
{
float torqueRatio = Math.Abs(ClutchTorque) / maxClutchTorque;
// If we're transmitting max torque, clutch is slipping
// If we're transmitting less, clutch is gripping
ClutchSlipRatio = torqueRatio; // 0 = no slip, 1 = full slip
}
else
{
ClutchSlipRatio = 1f;
}
} }
private void ApplyEngineToWheels(float clutchTorque, float deltaTime) // Other methods...
public float GearRatio => GetCurrentGearRatio();
public float TotalRatio => GearRatio * FinalDriveRatio;
private float GetCurrentGearRatio()
{ {
// Existing logic for engine driving wheels if (currentGear == 0) return 0f;
float netWheelTorque = clutchTorque * Efficiency - WheelSystem.ResistanceTorque; if (currentGear == -1) return -3.5f;
float netEngineTorque = -clutchTorque / TotalRatio; if (currentGear > 0 && currentGear <= GearRatios.Length)
return GearRatios[currentGear - 1];
// Apply to both return 0f;
Engine.ApplyTorque(netEngineTorque, deltaTime);
WheelSystem.ApplyTorque(netWheelTorque, deltaTime);
} }
private void ApplyWheelsToEngine(float clutchTorque, float deltaTime)
{
// Wheels driving engine (engine braking)
// Negative clutchTorque means wheels are trying to spin engine faster
float wheelTorque = clutchTorque; // Negative value
float engineTorque = -clutchTorque / TotalRatio; // Positive resistance
// Apply resistance to wheels
WheelSystem.ApplyTorque(wheelTorque, deltaTime);
Engine.ApplyTorque(-engineTorque, deltaTime); // Negative = slowing
}
public float GetEquivalentInertiaAtEngine()
{
float wheelInertia = WheelSystem.GetTotalInertia();
return Engine.MomentOfInertia + (wheelInertia * TotalRatio * TotalRatio);
}
public float CalculateEngineLoad(float deltaTime)
{
if (ClutchEngagement <= 0.01f) return 0f;
float wheelResistanceTorque = WheelSystem.ResistanceTorque;
float engineLoadTorque = wheelResistanceTorque / (TotalRatio * Efficiency);
float inertiaLoad = CalculateInertiaLoad(deltaTime);
return engineLoadTorque + inertiaLoad;
}
private float CalculateInertiaLoad(float deltaTime)
{
float wheelAlpha = (WheelSystem.AngularVelocity - previousWheelOmega) / deltaTime;
previousWheelOmega = WheelSystem.AngularVelocity;
float inertiaTorque = wheelAlpha * WheelSystem.GetTotalInertia();
return inertiaTorque / (TotalRatio * TotalRatio * Efficiency);
}
public void Update(float deltaTime)
{
ApplyDrivetrainWork(deltaTime);
}
// Helper methods
public float GetSpeedDifferenceRPM() public float GetSpeedDifferenceRPM()
{ {
return SpeedDifference * PhysicsUtil.RAD_PER_SEC_TO_RPM; float expectedWheelOmega = Engine.AngularVelocity / TotalRatio;
float actualWheelOmega = WheelSystem.AngularVelocity;
return (actualWheelOmega - expectedWheelOmega) * PhysicsUtil.RAD_PER_SEC_TO_RPM;
} }
public string GetCurrentGearName() public string GetCurrentGearName()
@@ -202,5 +153,13 @@
_ => currentGear.ToString() _ => currentGear.ToString()
}; };
} }
public float GetClutchSlipPercent()
{
return ClutchSlipRatio * 100f;
}
public void GearUp() { if (currentGear < GearRatios.Length) currentGear++; }
public void GearDown() { if (currentGear > 1) currentGear--; }
} }
} }

View File

@@ -3,7 +3,7 @@
public class Engine public class Engine
{ {
// Energy state // Energy state
public float FlywheelEnergy { get; set; } // Joules public float FlywheelEnergy { get; set; }
// Values // Values
public float RPM => GetRPM(); public float RPM => GetRPM();
@@ -11,40 +11,35 @@
public float CurrentPower { get; private set; } public float CurrentPower { get; private set; }
// Physical properties // Physical properties
public float MomentOfInertia { get; set; } = 0.25f; // kg·m² public float MomentOfInertia { get; set; } = 0.25f;
public float IdleRPM { get; set; } = 800f; public float IdleRPM { get; set; } = 800f;
public float StallSpeed { get; set; } = 200f; public float StallSpeed { get; set; } = 200f;
public float Throttle { get; set; } = 0f; public float Throttle { get; set; } = 0f;
public bool IsRunning => RPM > StallSpeed; public bool IsRunning => RPM > StallSpeed;
// Torque characteristics // Torque curve
public Dictionary<float, float> TorqueCurve { get; set; } = new() public Dictionary<float, float> TorqueCurve { get; set; } = new()
{ {
// RPM - Torque Nm
{ 0f, 0f }, { 0f, 0f },
{ 800f, 150f }, // Idle { 800f, 150f },
{ 2000f, 200f }, // Peak torque { 2000f, 250 },
{ 4500f, 250f }, { 4500f, 250f },
{ 7200f, 250f }, { 6800f, 200f },
{ 9200f, 250f }, { 7200f, 150 },
{ 10000f, 200f }, { 7500f, 0f },
{ 11000f, 0f }
}; };
public Engine() public Engine()
{ {
// Start with idle energy
FlywheelEnergy = GetEnergyFromRPM(IdleRPM); FlywheelEnergy = GetEnergyFromRPM(IdleRPM);
} }
// Calculations public float CalculateFrictionLoss(float deltaTime)
public float CalculateFrictionEnergy(float deltaTime)
{ {
// Real friction torque data for 2.0L engine (Nm)
float frictionTorque; float frictionTorque;
if (RPM < 500) frictionTorque = 15f; // Static/breakaway // Realistic friction based on RPM
if (RPM < 500) frictionTorque = 15f;
else if (RPM < 1000) frictionTorque = 14f; else if (RPM < 1000) frictionTorque = 14f;
else if (RPM < 2000) frictionTorque = 16f; else if (RPM < 2000) frictionTorque = 16f;
else if (RPM < 3000) frictionTorque = 18f; else if (RPM < 3000) frictionTorque = 18f;
@@ -58,29 +53,28 @@
return frictionPower * deltaTime; return frictionPower * deltaTime;
} }
private float CalculateCombustionEnergy(float deltaTime) public float CalculateCombustionPower(float deltaTime)
{ {
float torque = GetTorqueOutput() * GetActualThrottle(); float torque = GetTorqueOutput() * GetActualThrottle();
return torque * AngularVelocity * deltaTime; return torque * AngularVelocity * deltaTime;
} }
private float CalculateLoadEnergy(float deltaTime, float loadTorque)
{
return loadTorque * AngularVelocity * deltaTime;
}
// Get
public float GetActualThrottle() public float GetActualThrottle()
{ {
float idleThrottle = Math.Max((IdleRPM - RPM) / 10, 0); // Idle control: maintain idle speed when throttle is low
return Math.Clamp(Throttle + idleThrottle, 0, 1); if (RPM < IdleRPM && Throttle < 0.1f)
{
float idleThrottle = (IdleRPM - RPM) / 200f;
return Math.Clamp(idleThrottle, 0.1f, 0.3f);
}
return Throttle;
} }
public float GetOmega() public float GetOmega()
{ {
if (FlywheelEnergy <= 0) return 0; if (FlywheelEnergy <= 0) return 0;
return MathF.Sqrt(2f * FlywheelEnergy / MomentOfInertia); return MathF.Sqrt(2f * FlywheelEnergy / MomentOfInertia);
} }
public float GetRPM() public float GetRPM()
@@ -88,15 +82,12 @@
return GetOmega() * PhysicsUtil.RAD_PER_SEC_TO_RPM; return GetOmega() * PhysicsUtil.RAD_PER_SEC_TO_RPM;
} }
// Set
public float GetEnergyFromRPM(float rpm) public float GetEnergyFromRPM(float rpm)
{ {
float omega = rpm * PhysicsUtil.RPM_TO_RAD_PER_SEC; float omega = rpm * PhysicsUtil.RPM_TO_RAD_PER_SEC;
return 0.5f * MomentOfInertia * omega * omega; return 0.5f * MomentOfInertia * omega * omega;
} }
// torque curve
public float GetTorqueOutput() public float GetTorqueOutput()
{ {
if (RPM <= 0) return 0; if (RPM <= 0) return 0;
@@ -118,25 +109,28 @@
return 0f; return 0f;
} }
public void ApplyTorque(float torque, float deltaTime) public void Update(float deltaTime)
{ {
if (torque == 0) return; // Combustion adds energy (if throttle > 0)
float combustionEnergy = CalculateCombustionPower(deltaTime);
float work = torque * AngularVelocity * deltaTime; // Friction always removes energy
float frictionLoss = CalculateFrictionLoss(deltaTime);
FlywheelEnergy += work; // Net energy change from combustion and friction ONLY
FlywheelEnergy = Math.Max(FlywheelEnergy, 0); // Note: Drivetrain energy transfer happens separately in Drivetrain.Update()
} float netEnergy = combustionEnergy - frictionLoss;
public void Update(float deltaTime, float loadTorque)
{
float combustionEnergy = CalculateCombustionEnergy(deltaTime);
float frictionEnergy = CalculateFrictionEnergy(deltaTime);
float loadEnergy = CalculateLoadEnergy(deltaTime, loadTorque);
float netEnergy = combustionEnergy - frictionEnergy - loadEnergy;
CurrentPower = netEnergy / deltaTime; CurrentPower = netEnergy / deltaTime;
FlywheelEnergy += netEnergy; FlywheelEnergy += netEnergy;
// Stall protection - keep engine running if it has throttle
float stallEnergy = GetEnergyFromRPM(StallSpeed);
if (FlywheelEnergy < stallEnergy && Throttle > 0.1f)
{
FlywheelEnergy = stallEnergy * 1.2f;
}
FlywheelEnergy = Math.Max(FlywheelEnergy, 0); FlywheelEnergy = Math.Max(FlywheelEnergy, 0);
} }
} }

View File

@@ -138,21 +138,21 @@ internal class Program
// brake // brake
if (IsKeyDown(Keyboard.Key.B)) if (IsKeyDown(Keyboard.Key.B))
{ {
car.BrakeInput = Math.Min(car.BrakeInput + 0.5f * deltaTime, 1.0f); car.BrakeInput = Math.Min(car.BrakeInput + 1f * deltaTime, 1.0f);
} }
else else
{ {
car.BrakeInput = Math.Max(car.BrakeInput - 1f * deltaTime, 0f); car.BrakeInput = Math.Max(car.BrakeInput - 4f * deltaTime, 0f);
} }
// clutch // clutch
if (IsKeyDown(Keyboard.Key.Up)) if (IsKeyDown(Keyboard.Key.Up))
{ {
car.ClutchInput = Math.Min(car.ClutchInput + 1f * deltaTime, 1.0f); car.ClutchInput = Math.Min(car.ClutchInput + 0.1f * deltaTime, 1.0f);
} }
else if (IsKeyDown(Keyboard.Key.Down)) else if (IsKeyDown(Keyboard.Key.Down))
{ {
car.ClutchInput = Math.Max(car.ClutchInput - 1f * deltaTime, 0f); car.ClutchInput = Math.Max(car.ClutchInput - 0.1f * deltaTime, 0f);
} }
// clutch // clutch

View File

@@ -4,27 +4,43 @@
{ {
// Physical properties // Physical properties
public float Radius { get; set; } = 0.3f; // meters public float Radius { get; set; } = 0.3f; // meters
public float Inertia { get; set; } = 2.0f; // kg·m² per wheel public float WheelInertia { get; set; } = 2.0f; // kg·m² per wheel
public float CarMass { get; set; } = 1500f; // kg - Car mass integrated into wheel system
public int WheelCount { get; set; } = 4; public int WheelCount { get; set; } = 4;
public int DrivenWheels { get; set; } = 2; // 2WD public int DrivenWheels { get; set; } = 2; // 2WD
// State // State
public float WheelEnergy { get; set; } = 0f; // Joules public float TotalEnergy { get; set; } = 0f; // Joules (rotational + translational)
public float AngularVelocity => GetOmega(); public float AngularVelocity => GetOmega();
public float RPM => GetRPM(); public float RPM => GetRPM();
public float Speed => GetSpeed(); public float CarSpeed => GetCarSpeed(); // Now returns actual car speed
public float ResistanceTorque { get; set; } = 0f; public float ResistanceTorque { get; set; } = 0f;
// Calculations // Calculations
public float GetTotalRotationalInertia()
{
return WheelInertia * WheelCount;
}
public float GetEquivalentCarInertia()
{
// Convert car mass to equivalent rotational inertia at wheels
// I = m * r² (from v = ω * r, so KE_translational = 0.5 * m * v² = 0.5 * m * (ωr)² = 0.5 * m * r² * ω²)
return CarMass * Radius * Radius;
}
public float GetTotalInertia() public float GetTotalInertia()
{ {
return Inertia * WheelCount; // Total inertia = rotational inertia of wheels + equivalent inertia of car mass
return GetTotalRotationalInertia() + GetEquivalentCarInertia();
} }
public float GetOmega() public float GetOmega()
{ {
if (WheelEnergy <= 0 || GetTotalInertia() <= 0) return 0f; if (TotalEnergy <= 0 || GetTotalInertia() <= 0) return 0f;
return MathF.Sqrt(2f * WheelEnergy / GetTotalInertia()); return MathF.Sqrt(2f * TotalEnergy / GetTotalInertia());
} }
public float GetRPM() public float GetRPM()
@@ -32,27 +48,46 @@
return AngularVelocity * PhysicsUtil.RAD_PER_SEC_TO_RPM; return AngularVelocity * PhysicsUtil.RAD_PER_SEC_TO_RPM;
} }
public float GetSpeed() public float GetCarSpeed()
{ {
// v = ω * r (no slip assumed for base calculation)
return AngularVelocity * Radius; return AngularVelocity * Radius;
} }
public float GetRotationalEnergy()
{
// Just the energy from wheel rotation
float omega = GetOmega();
return 0.5f * GetTotalRotationalInertia() * omega * omega;
}
public float GetTranslationalEnergy()
{
// Just the energy from car motion
float speed = GetCarSpeed();
return 0.5f * CarMass * speed * speed;
}
public float GetEnergyFromSpeed(float speed) public float GetEnergyFromSpeed(float speed)
{ {
// Calculate total energy for given car speed
// Total energy = rotational energy of wheels + translational energy of car
float omega = speed / Radius; float omega = speed / Radius;
return 0.5f * GetTotalInertia() * omega * omega; float rotationalEnergy = 0.5f * GetTotalRotationalInertia() * omega * omega;
float translationalEnergy = 0.5f * CarMass * speed * speed;
return rotationalEnergy + translationalEnergy;
} }
public void SetSpeed(float speed) public void SetSpeed(float speed)
{ {
WheelEnergy = GetEnergyFromSpeed(speed); TotalEnergy = GetEnergyFromSpeed(speed);
} }
// Apply work to the wheels // Apply work to the entire system (wheels + car)
public void ApplyWork(float work) public void ApplyWork(float work)
{ {
WheelEnergy += work; TotalEnergy += work;
WheelEnergy = Math.Max(WheelEnergy, 0); TotalEnergy = Math.Max(TotalEnergy, 0);
} }
public void ApplyTorque(float torque, float deltaTime) public void ApplyTorque(float torque, float deltaTime)
@@ -70,8 +105,7 @@
if (MathF.Abs(omega) < 0.1f) if (MathF.Abs(omega) < 0.1f)
{ {
// Check if we have enough torque to overcome static friction // Static friction - return without applying resistance to allow startup
// For now, just return without applying resistance to allow startup
return; return;
} }
@@ -86,7 +120,7 @@
} }
float energyNew = 0.5f * GetTotalInertia() * omegaNew * omegaNew; float energyNew = 0.5f * GetTotalInertia() * omegaNew * omegaNew;
WheelEnergy = Math.Max(energyNew, 0); TotalEnergy = Math.Max(energyNew, 0);
} }
} }
} }